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and since the sum converges uniformly for z ∈ K, the approximation by
partial sums proves our claim.

This result allows us to travel from z0 to z1 through the finite sequence
{wj} to find that 1/(z − z0) can be approximated uniformly on K by
polynomials in 1/(z − z1). This concludes the proof of the lemma, and
also that of the theorem.

6 Exercises

1. Prove that
∫ ∞

0

sin(x2) dx =

∫ ∞

0

cos(x2) dx =

√
2π
4

.

These are the Fresnel integrals. Here,
∫∞
0

is interpreted as limR→∞
∫ R

0
.

[Hint: Integrate the function e−z2
over the path in Figure 14. Recall that∫∞

−∞ e−x2
dx =

√
π.]
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Figure 14. The contour in Exercise 1

2. Show that

∫ ∞

0

sin x
x

dx =
π
2

.

[Hint: The integral equals 1
2i

∫∞
−∞

eix−1
x dx. Use the indented semicircle.]

3. Evaluate the integrals

∫ ∞

0

e−ax cos bx dx and

∫ ∞

0

e−ax sin bx dx , a > 0

by integrating e−Az, A =
√

a2 + b2, over an appropriate sector with angle ω, with
cosω = a/A.



6. Exercises 65

4. Prove that for all ξ ∈ C we have e−πξ2
=

∫ ∞

−∞
e−πx2

e2πixξ dx.

5. Suppose f is continuously complex differentiable on Ω, and T ⊂ Ω is a triangle
whose interior is also contained in Ω. Apply Green’s theorem to show that

∫

T

f(z) dz = 0.

This provides a proof of Goursat’s theorem under the additional assumption that
f ′ is continuous.

[Hint: Green’s theorem says that if (F, G) is a continuously differentiable vector
field, then

∫

T

F dx + G dy =

∫

Interior of T

(
∂G
∂x

− ∂F
∂y

)
dxdy.

For appropriate F and G, one can then use the Cauchy-Riemann equations.]

6. Let Ω be an open subset of C and let T ⊂ Ω be a triangle whose interior is also
contained in Ω. Suppose that f is a function holomorphic in Ω except possibly at
a point w inside T . Prove that if f is bounded near w, then

∫

T

f(z) dz = 0.

7. Suppose f : D → C is holomorphic. Show that the diameter d =
supz, w∈D |f(z) − f(w)| of the image of f satisfies

2|f ′(0)| ≤ d.

Moreover, it can be shown that equality holds precisely when f is linear, f(z) =
a0 + a1z.

Note. In connection with this result, see the relationship between the diameter of
a curve and Fourier series described in Problem 1, Chapter 4, Book I.

[Hint: 2f ′(0) = 1
2πi

∫
|ζ|=r

f(ζ)−f(−ζ)
ζ2 dζ whenever 0 < r < 1.]

8. If f is a holomorphic function on the strip −1 < y < 1, x ∈ R with

|f(z)| ≤ A(1 + |z|)η, η a fixed real number

for all z in that strip, show that for each integer n ≥ 0 there exists An ≥ 0 so that

|f (n)(x)| ≤ An(1 + |x|)η, for all x ∈ R.

[Hint: Use the Cauchy inequalities.]
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9. Let Ω be a bounded open subset of C, and ϕ : Ω → Ω a holomorphic function.
Prove that if there exists a point z0 ∈ Ω such that

ϕ(z0) = z0 and ϕ′(z0) = 1

then ϕ is linear.

[Hint: Why can one assume that z0 = 0? Write ϕ(z) = z + anzn + O(zn+1) near
0, and prove that if ϕk = ϕ ◦ · · · ◦ ϕ (where ϕ appears k times), then ϕk(z) =
z + kanzn + O(zn+1). Apply the Cauchy inequalities and let k → ∞ to conclude
the proof. Here we use the standard O notation, where f(z) = O(g(z)) as z → 0
means that |f(z)| ≤ C|g(z)| for some constant C as |z| → 0.]

10. Weierstrass’s theorem states that a continuous function on [0, 1] can be uni-
formly approximated by polynomials. Can every continuous function on the closed
unit disc be approximated uniformly by polynomials in the variable z?

11. Let f be a holomorphic function on the disc DR0 centered at the origin and
of radius R0.

(a) Prove that whenever 0 < R < R0 and |z| < R, then

f(z) =
1
2π

∫ 2π

0

f(Reiϕ)Re

(
Reiϕ + z
Reiϕ − z

)
dϕ.

(b) Show that

Re

(
Reiγ + r
Reiγ − r

)
=

R2 − r2

R2 − 2Rr cos γ + r2
.

[Hint: For the first part, note that if w = R2/z, then the integral of f(ζ)/(ζ − w)
around the circle of radius R centered at the origin is zero. Use this, together with
the usual Cauchy integral formula, to deduce the desired identity.]

12. Let u be a real-valued function defined on the unit disc D. Suppose that u is
twice continuously differentiable and harmonic, that is,

*u(x, y) = 0

for all (x, y) ∈ D.

(a) Prove that there exists a holomorphic function f on the unit disc such that

Re(f) = u.

Also show that the imaginary part of f is uniquely defined up to an additive
(real) constant. [Hint: From the previous chapter we would have f ′(z) =
2∂u/∂z. Therefore, let g(z) = 2∂u/∂z and prove that g is holomorphic.
Why can one find F with F ′ = g? Prove that Re(F ) differs from u by a real
constant.]
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(b) Deduce from this result, and from Exercise 11, the Poisson integral repre-
sentation formula from the Cauchy integral formula: If u is harmonic in the
unit disc and continuous on its closure, then if z = reiθ one has

u(z) =
1
2π

∫ 2π

0

Pr(θ − ϕ)u(ϕ) dϕ

where Pr(γ) is the Poisson kernel for the unit disc given by

Pr(γ) =
1 − r2

1 − 2r cos γ + r2
.

13. Suppose f is an analytic function defined everywhere in C and such that for
each z0 ∈ C at least one coefficient in the expansion

f(z) =
∞∑

n=0

cn(z − z0)
n

is equal to 0. Prove that f is a polynomial.

[Hint: Use the fact that cnn! = f (n)(z0) and use a countability argument.]

14. Suppose that f is holomorphic in an open set containing the closed unit disc,
except for a pole at z0 on the unit circle. Show that if

∞∑

n=0

anzn

denotes the power series expansion of f in the open unit disc, then

lim
n→∞

an

an+1
= z0.

15. Suppose f is a non-vanishing continuous function on D that is holomorphic in
D. Prove that if

|f(z)| = 1 whenever |z| = 1,

then f is constant.

[Hint: Extend f to all of C by f(z) = 1/f(1/z) whenever |z| > 1, and argue as in
the Schwarz reflection principle.]

7 Problems

1. Here are some examples of analytic functions on the unit disc that cannot be
extended analytically past the unit circle. The following definition is needed. Let
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f be a function defined in the unit disc D, with boundary circle C. A point w on C
is said to be regular for f if there is an open neighborhood U of w and an analytic
function g on U , so that f = g on D ∩ U . A function f defined on D cannot be
continued analytically past the unit circle if no point of C is regular for f .

(a) Let

f(z) =
∞∑

n=0

z2n

for |z| < 1.

Notice that the radius of convergence of the above series is 1. Show that
f cannot be continued analytically past the unit disc. [Hint: Suppose
θ = 2πp/2k, where p and k are positive integers. Let z = reiθ; then
|f(reiθ)| → ∞ as r → 1.]

(b) ∗ Fix 0 < α < ∞. Show that the analytic function f defined by

f(z) =
∞∑

n=0

2−nαz2n

for |z| < 1

extends continuously to the unit circle, but cannot be analytically continued
past the unit circle. [Hint: There is a nowhere differentiable function lurking
in the background. See Chapter 4 in Book I.]

2.∗ Let

F (z) =
∞∑

n=1

d(n)zn for |z| < 1

where d(n) denotes the number of divisors of n. Observe that the radius of con-
vergence of this series is 1. Verify the identity

∞∑

n=1

d(n)zn =
∞∑

n=1

zn

1 − zn
.

Using this identity, show that if z = r with 0 < r < 1, then

|F (r)| ≥ c
1

1 − r
log(1/(1 − r))

as r → 1. Similarly, if θ = 2πp/q where p and q are positive integers and z = reiθ,
then

|F (reiθ)| ≥ cp/q
1

1 − r
log(1/(1 − r))

as r → 1. Conclude that F cannot be continued analytically past the unit disc.

3. Morera’s theorem states that if f is continuous in C, and
∫

T
f(z) dz = 0 for all

triangles T , then f is holomorphic in C. Naturally, we may ask if the conclusion
still holds if we replace triangles by other sets.
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(a) Suppose that f is continuous on C, and

(16)

∫

C

f(z) dz = 0

for every circle C. Prove that f is holomorphic.

(b) More generally, let Γ be any toy contour, and F the collection of all trans-
lates and dilates of Γ. Show that if f is continuous on C, and

∫

γ

f(z) dz = 0 for all γ ∈ F

then f is holomorphic. In particular, Morera’s theorem holds under the
weaker assumption that

∫
T

f(z) dz = 0 for all equilateral triangles.

[Hint: As a first step, assume that f is twice real differentiable, and write f(z) =
f(z0) + a(z − z0) + b(z − z0) + O(|z − z0|2) for z near z0. Integrating this expan-
sion over small circles around z0 yields ∂f/∂z = b = 0 at z0. Alternatively, suppose
only that f is differentiable and apply Green’s theorem to conclude that the real
and imaginary parts of f satisfy the Cauchy-Riemann equations.

In general, let ϕ(w) = ϕ(x, y) (when w = x + iy) denote a smooth function with
0 ≤ ϕ(w) ≤ 1, and

∫
R2 ϕ(w) dV (w) = 1, where dV (w) = dxdy, and

∫
denotes the

usual integral of a function of two variables in R2. For each ε > 0, let ϕε(z) =
ε−2ϕ(ε−1z), as well as

fε(z) =

∫

R2
f(z − w)ϕε(w) dV (w),

where the integral denotes the usual integral of functions of two variables, with
dV (w) the area element of R2. Then fε is smooth, satisfies condition (16), and
fε → f uniformly on any compact subset of C.]

4. Prove the converse to Runge’s theorem: if K is a compact set whose complement
if not connected, then there exists a function f holomorphic in a neighborhood of
K which cannot be approximated uniformly by polynomial on K.

[Hint: Pick a point z0 in a bounded component of Kc, and let f(z) = 1/(z − z0).
If f can be approximated uniformly by polynomials on K, show that there exists a
polynomial p such that |(z − z0)p(z) − 1| < 1. Use the maximum modulus principle
(Chapter 3) to show that this inequality continues to hold for all z in the component
of Kc that contains z0.]

5.∗ There exists an entire function F with the following “universal” property: given
any entire function h, there is an increasing sequence {Nk}∞k=1 of positive integers,
so that

lim
n→∞

F (z + Nk) = h(z)

uniformly on every compact subset of C.
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(a) Let p1, p2, . . . denote an enumeration of the collection of polynomials whose
coefficients have rational real and imaginary parts. Show that it suffices
to find an entire function F and an increasing sequence {Mn} of positive
integers, such that

(17) |F (z) − pn(z − Mn)| <
1
n

whenever z ∈ Dn,

where Dn denotes the disc centered at Mn and of radius n. [Hint: Given
h entire, there exists a sequence {nk} such that limk→∞ pnk(z) = h(z) uni-
formly on every compact subset of C.]

(b) Construct F satisfying (17) as an infinite series

F (z) =
∞∑

n=1

un(z)

where un(z) = pn(z − Mn)e−cn(z−Mn)2 , and the quantities cn > 0 and Mn >
0 are chosen appropriately with cn → 0 and Mn → ∞. [Hint: The function

e−z2
vanishes rapidly as |z| → ∞ in the sectors {| arg z| < π/4 − δ} and

{|π − arg z| < π/4 − δ}.]

In the same spirit, there exists an alternate “universal” entire function G with
the following property: given any entire function h, there is an increasing sequence
{Nk}∞k=1 of positive integers, so that

lim
k→∞

DNkG(z) = h(z)

uniformly on every compact subset of C. Here DjG denotes the jth (complex)
derivative of G.




